
Design: Meta-analysis of randomized and nonrandomized clinical trials

Study question: In patients with knee osteoarthritis (OA), does injection of platelet-rich plasma (PRP) improve knee function in comparison with control injections of hyaluronic acid (HA) or normal saline (NS)?

PICOS:

- Patient population: adults with osteoarthritis of the knee of any severity
- Intervention: At least two PRP injections
 - Data from one study in which one of the PRP groups had only one injection were excluded
- Comparison: Intra-articular HA or NS injections
 - One study had two HA control groups: a low molecular weight and a high molecular weight group; in this study, the high molecular weight group was selected for analysis
- Outcomes: Principal outcome was function assessed by the Western Ontario and McMaster Universities Arthritis Index (WOMAC) at 24 or more weeks
 - Secondary outcomes were pain VAS, the International Knee Documentation Committee (IKDC) form, patient-reported satisfaction, and occurrence of adverse events
- Study types: Randomized clinical trials (RCTs) and prospective cohort studies

Study selection:

- Databases included PubMed, MEDLINE, EMBASE, and the Cochrane Register through week 6 of 2013
- Two authors independently reviewed titles and abstracts for inclusion criteria and rated methodological quality with the Detsky Scale, resolving discrepancies through discussion with the senior author
 - The Detsky scale is an older quality analysis tool which has been mostly replaced by the Cochrane risk of bias tool; it resembles the Cochrane scale in most essentials
 - A Detsky scale score of 75% or greater was required for inclusion

Results:
- 157 abstracts were reviewed; after exclusion for insufficient followup, low level evidence, or inadequate data reporting, 6 studies, with 577 patients (625 knees) were included in a meta-analysis, five written in English and one in Chinese
 - Four were RCTs and two were prospective cohort studies with comparable control groups
- The mean age of the PRP patients was 56, and 51.5% were men; the mean age of the control patients was 57, and 49.5% were men
- Five studies used the Kellgren-Lawrence Grading (KLG) scale and one used the Ahlback scale to grade OA severity
 - Among the 5 studies using the KLG, 62 were grade 0, 123 were grade I, 127 were grade II, 63 were grade III, and 33 were grade IV
 - In the one study using the Ahlback scale, 61 were grade 1, 28 were grade 2, and 5 were grade 3
- In 5 studies, the control injection was HA; in one study, it was NS
- Followup intervals varied among studies, but all reported functional outcomes at 24 weeks
 - At 24 weeks, the overall WOMAC score from 4 studies with 318 patients favored PRP, with a mean difference of 18 points (95% CI from 8.3 to 27.75)
 - The IKDC score also favored PRP in 3 studies with 289 patients, with a mean difference of 7.9 (95% CI from 3.72 to 12.08)
- At 24 weeks, the pain VAS from 2 studies with 198 patients did not differ between PRP and control injections
- At 24 weeks, there was no difference in perceived patient satisfaction in 2 studies with 198 patients
- Reporting of adverse events was uneven
 - 2 studies reported no adverse events
 - 1 study reported 19 adverse events with PRP but none with NS
 - Another study reported 31 adverse events in the PRP group and 30 in the HA group
 - 1 study lacked reporting of adverse events
 - 1 study reported worsening of pain with PRP in 6 patients, resolving within two days
 - Overall, more adverse events were reported with PRP than with control (8.4% vs 3.8%)

Authors’ conclusions:

- Multiple sequential intra-articular PRP injections improve functional outcomes of WOMAC and IKDC at a minimum of 24 weeks in comparison with HA or NS
- However, pain VAS and patient satisfaction scores did not differ with PRP compared to control injection
- There may be more nonspecific adverse events with PRP than with control injection.

- The review had some limitations:
 - Both RCTs and cohort studies were pooled, which could increase the risk of selection bias; however, only high quality studies using established outcome measures were included.
 - Small sample sizes could limit the power of the pooled analysis to detect treatment effects.
 - PRP preparation techniques are among the many potential sources of heterogeneity between studies.

Comments:

- The pooling of randomized with cohort studies can be somewhat remedied by removing the latter from the analysis.
 - Figure 2 displays the forest plots for the major outcomes.
 - For the WOMAC, Spakova 2012 is a cohort study, and its removal does not affect the estimate of treatment effect; a pooled effect size of 20.4 points is not different from one of 18 points.
 - For the IKDC, Filardo 2015 also analyzed the effect of PRP on knee OA, and when it is included in a meta-analysis, the effect size for this outcome is only 6.22 points.
 - Part C of Figure 2 combines Kon’s cohort study with Patel’s RCT; it does contain a significant error in reporting the PRP group’s pain VAS as 4.6 rather than 2.54; when this is corrected, Kon is removed, and Patel is allowed to stand alone, an effect size of 2.06 points is the result in favor of PRP.

- The authors do not show their quality assessments for the included studies, and there is no information about how they arrived at the evaluation that they were of high quality.

Table: Treatment Effect Sizes

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PRP Mean</th>
<th>PRP SD</th>
<th>PRP Total</th>
<th>Control Mean</th>
<th>Control SD</th>
<th>Control Total</th>
<th>Mean Difference</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerza 2012</td>
<td>36.5</td>
<td>17.9</td>
<td>60</td>
<td>65.1</td>
<td>10.6</td>
<td>60</td>
<td>-28.6 (-33.88, -23.34)</td>
<td></td>
</tr>
<tr>
<td>Li 2011</td>
<td>10.7</td>
<td>9.9</td>
<td>15</td>
<td>20.6</td>
<td>8.3</td>
<td>15</td>
<td>-9.9 (-18.44, -0.36)</td>
<td></td>
</tr>
<tr>
<td>Patel 2013</td>
<td>20.5</td>
<td>25.9</td>
<td>50</td>
<td>53.1</td>
<td>17.9</td>
<td>46</td>
<td>-31.2 (-31.45, -13.75)</td>
<td></td>
</tr>
<tr>
<td>Spakova 2012</td>
<td>18.9</td>
<td>14.1</td>
<td>60</td>
<td>30.1</td>
<td>16.6</td>
<td>60</td>
<td>-11.2 (-15.71, -6.69)</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI): 125 (121) 100.0% -20.41 (-32.45, -8.37)

Heterogeneity: $I^2 = 100.00$; $H^2 = 19.14$, $df = 2$ ($P = 0.0001$); $P = 90$

Test for overall effect: $Z = 3.32$ ($P = 0.0009$)

- Figure 2 displays the forest plots for the major outcomes.
 - For the WOMAC, Spakova 2012 is a cohort study, and its removal does not affect the estimate of treatment effect; a pooled effect size of 20.4 points is not different from one of 18 points.
 - For the IKDC, Filardo 2015 also analyzed the effect of PRP on knee OA, and when it is included in a meta-analysis, the effect size for this outcome is only 6.22 points.
 - Part C of Figure 2 combines Kon’s cohort study with Patel’s RCT; it does contain a significant error in reporting the PRP group’s pain VAS as 4.6 rather than 2.54; when this is corrected, Kon is removed, and Patel is allowed to stand alone, an effect size of 2.06 points is the result in favor of PRP.

- The authors do not show their quality assessments for the included studies, and there is no information about how they arrived at the evaluation that they were of high quality.

Table: Treatment Effect Sizes

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PRP Mean</th>
<th>PRP SD</th>
<th>PRP Total</th>
<th>Control Mean</th>
<th>Control SD</th>
<th>Control Total</th>
<th>Mean Difference</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filardo 2012</td>
<td>84.5</td>
<td>16.4</td>
<td>54</td>
<td>61</td>
<td>18.2</td>
<td>55</td>
<td>25.5%</td>
<td>3.30 (3.20, 3.40)</td>
</tr>
<tr>
<td>Filardo 2015</td>
<td>65</td>
<td>16.1</td>
<td>94</td>
<td>63.5</td>
<td>17.1</td>
<td>89</td>
<td>21.2%</td>
<td>1.50 (1.32, 1.68)</td>
</tr>
<tr>
<td>Kon 2011</td>
<td>64</td>
<td>18.7</td>
<td>50</td>
<td>54</td>
<td>15</td>
<td>50</td>
<td>24.6%</td>
<td>6.00 (5.10, 6.90)</td>
</tr>
<tr>
<td>Li 2011</td>
<td>76.6</td>
<td>13.6</td>
<td>15</td>
<td>63.2</td>
<td>11.9</td>
<td>15</td>
<td>18.3%</td>
<td>13.20 (10.08, 22.31)</td>
</tr>
</tbody>
</table>

Total (95% CI): 213 (209) 100.0% 6.22 (1.01, 11.43)

Heterogeneity: $I^2 = 18.55$; $H^2 = 7.46$, $df = 3$ ($P = 0.06$); $P = 60$

Test for overall effect: $Z = 2.34$ ($P = 0.02$)
The omission of detail about the quality rankings casts considerable doubt on the strength of the meta-analysis, since one of the included studies (Cerza 2012) was probably not adequately randomized

- Cerza “randomized” consecutive patients by admission to the hospital, and only did platelet counts on those allocated to PRP; this may prevent selection bias but the allocation is considered quasi-randomized rather than randomized
 - Because only the PRP group had blood drawn for concentrating the platelets, the study cannot have been adequately blinded
- Patel probably randomized adequately by “computer-derived random charts,” which is likely to mean that a random process was implemented; Patel also drew blood from both groups to maintain blinding
- Filardo 2012, one of the included studies, was adequately randomized and blinded; it favored PRP but the confidence interval included the null value for knee function

- Patel randomized patients into three groups: Group A had one PRP injection, Group B had two PRP injections, and Group C had a single NS injection; only Group B was included in the analysis of results
 - Groups A and B had very nearly identical outcomes, and the comparison with NS does not greatly suffer from the choice of comparison group

- Different studies included patients with different grades of OA pathology
 - Patel graded OA with the Ahlback system, while the other studies used KLG
 - Patel’s Table 1 shows 61 knees as grade 1, 28 as grade 2, and 5 as grade 3
 - Ahlback grade 1 is joint space narrowing of less than 3 mm, and is about equivalent to KLG grade III; grade 2 is joint space obliteration, and is about equivalent to KLG grade IV
 - Therefore the Patel study appears to have enrolled patients with more advanced OA, many of whom would be candidates for knee replacement
 - However, nothing can be said about the potential for PRP to forestall the need for total joint replacement with advanced OA

- Patel used NS as the control while the others used HA; removing Patel from the pooled data on the WOMAC had no effect on the treatment effect; this is consistent with evidence from elsewhere that HA has little effect beyond placebo for OA
- Because of the overall uncertainty about the quality of all included studies, the level of current evidence is better rated as “some” than as “good”

Assessment: Marginally adequate meta-analysis which nevertheless supports a statement that there is some evidence that in the setting of knee OA, intra-articular injection with PRP is more effective than HA or placebo in improving knee function and pain

References:

